Extensions 1→N→G→Q→1 with N=C23.D5 and Q=S3

Direct product G=NxQ with N=C23.D5 and Q=S3
dρLabelID
S3xC23.D5120S3xC2^3.D5480,630

Semidirect products G=N:Q with N=C23.D5 and Q=S3
extensionφ:Q→Out NdρLabelID
C23.D5:1S3 = C15:8(C23:C4)φ: S3/C3C2 ⊆ Out C23.D51204C2^3.D5:1S3480,72
C23.D5:2S3 = C15:9(C23:C4)φ: S3/C3C2 ⊆ Out C23.D51204C2^3.D5:2S3480,73
C23.D5:3S3 = C23.D5:S3φ: S3/C3C2 ⊆ Out C23.D5240C2^3.D5:3S3480,601
C23.D5:4S3 = Dic15.19D4φ: S3/C3C2 ⊆ Out C23.D5240C2^3.D5:4S3480,602
C23.D5:5S3 = C10.(C2xD12)φ: S3/C3C2 ⊆ Out C23.D5240C2^3.D5:5S3480,618
C23.D5:6S3 = (C2xC10).D12φ: S3/C3C2 ⊆ Out C23.D5240C2^3.D5:6S3480,619
C23.D5:7S3 = (S3xC10).D4φ: S3/C3C2 ⊆ Out C23.D5240C2^3.D5:7S3480,631
C23.D5:8S3 = D30:7D4φ: S3/C3C2 ⊆ Out C23.D5240C2^3.D5:8S3480,633
C23.D5:9S3 = Dic15:4D4φ: S3/C3C2 ⊆ Out C23.D5240C2^3.D5:9S3480,634
C23.D5:10S3 = Dic15:17D4φ: S3/C3C2 ⊆ Out C23.D5240C2^3.D5:10S3480,636
C23.D5:11S3 = D30.45D4φ: S3/C3C2 ⊆ Out C23.D5120C2^3.D5:11S3480,637
C23.D5:12S3 = D30.16D4φ: S3/C3C2 ⊆ Out C23.D5240C2^3.D5:12S3480,638
C23.D5:13S3 = (C2xC10):11D12φ: S3/C3C2 ⊆ Out C23.D5120C2^3.D5:13S3480,646
C23.D5:14S3 = D30:19D4φ: S3/C3C2 ⊆ Out C23.D5120C2^3.D5:14S3480,649
C23.D5:15S3 = C15:28(C4xD4)φ: trivial image240C2^3.D5:15S3480,632

Non-split extensions G=N.Q with N=C23.D5 and Q=S3
extensionφ:Q→Out NdρLabelID
C23.D5.1S3 = C23.13(S3xD5)φ: S3/C3C2 ⊆ Out C23.D5240C2^3.D5.1S3480,606
C23.D5.2S3 = C23.14(S3xD5)φ: S3/C3C2 ⊆ Out C23.D5240C2^3.D5.2S3480,607
C23.D5.3S3 = C23.48(S3xD5)φ: S3/C3C2 ⊆ Out C23.D5240C2^3.D5.3S3480,608
C23.D5.4S3 = (C2xC10):8Dic6φ: S3/C3C2 ⊆ Out C23.D5240C2^3.D5.4S3480,651
C23.D5.5S3 = Dic15.48D4φ: S3/C3C2 ⊆ Out C23.D5240C2^3.D5.5S3480,652
C23.D5.6S3 = C23.26(S3xD5)φ: trivial image240C2^3.D5.6S3480,605

׿
x
:
Z
F
o
wr
Q
<